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Abstract

A growing self-organizing map using a gravitational algorithm was implemented on a transputer to study possible

separation of GEANT simulated beam background events and physics events (e`e~PB°B°, qq, ggg, 2c,q`q~).
A fraction of 75.0% of beam background events can be rejected, 96.9% of physics events pass the classification. The
decision time is q42ms, thus the system could be used online as level 3 trigger as well as for offline data filtering
purposes. ( 1999 Published by Elsevier Science B.V. All rights reserved.

1. Introduction

The BELLE detector [1] is a large scale detector
system for precision measurements of charged and
neutral particles, to be implemented at the KEK-B
facility [2], a high luminosity asymmetric e`e~
collider. The main experimental goal will be the
investigation of CP violation in B meson

systems. The Silicon Vertex Detector (SVD) is the
most inner subdetector of BELLE, consisting of
81.900 silicon strips with a strip width of 84lm for
z strips and 50lm for ru strips. The B meson vertex
resolution will be *z557lm.

The source of the B mesons is the decay of the
¶(4S) resonance, produced in an e`e~ collision at

*Corresponding author. Tel.: #81 426 77 3025; fax: #81
426 77 3002; e-mail: soeren@tmubsun.center.metro-u.ac.jp.

Js"10.6GeV. The final multiparticle state con-
sists of &10—12 charged particles, detected in the
SVD, along with 10—20 neutral particles (c, l), de-
tected e.g. by the BELLE CsI(Tl) calorimeter. Be-
sides B physics other reactions types are of interest,
too, and should pass any trigger system for final
data acquisition (cf. Section 2.2).

One of the main background sources is given by
beam background reactions (cf. Section 2.3), result-
ing from collisions of the beam e` or e~ with
residual gas in the accelerator vacuum pipe. The
expected trigger rate is R

BG
5100 Hz, well down

below the maximum BELLE DAQ readout rate of
R"500Hz [3]. However, there is a necessity to
study a possible beam background rejection algo-
rithm because R

BG
is a linear function of the resid-

ual gas concentration and, hence, of the beampipe
pressure P. If the design parameter of KEK-B vac-
uum system P"1]10~9 torr [2] is not achieved,
e.g. during accelerator commissioning phase, much
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Fig. 1. Hit positions y
)*5

vs. x
)*5

for GEANT simulated beam background events. Left: Beam axis view. The SVD detector structure is
visible. Right: Lego plot. An enhancement in the uK0 region is visible.

higher rates R
BG

must be expected. As will be
pointed out in Section 4.1, beam background
events have the highest charge multiplicity and,
hence, the largest SVD data size of all event types.
Limitations in the bandwidth in DAQ data transfer
interfaces therefore lead to the necessity of rejecting
beam background events, if possible.

The Data Acquisition (DAQ) system of the SVD
(cf. Section 3.2) is proposed to consist of T805
transputers (cf. Section 3.1). In this paper we study
the possibility to use the transputer system not only
for DAQ purposes, but also as event pattern recog-
nition system for rejection of beam background.
The basic design parameters of this system are as
follows: (a) only usage of SVD information, (b)
rejection of a fraction of physics events less than
5% and (c) the decision time q42ms for a possible
use of the system as level 3 trigger (corresponding
to R"500Hz).

The SVD DAQ system is principally separated
from other BELLE subdetector DAQ systems,
leading to the requirement (a). Moreover, beam
background mainly consists of charged, low
momentum particles (“spent electrons”, cf. Sec-
tion 2.3). Thus, neutral particle information, mea-
sured by other BELLE subdetectors, is principally
not necessary for classification.

Requirement (c) itself leads to the necessity of
using a fast, simple algorithm. Due to this require-
ment it was decided to use a 2-dim zu topology

analysis rather than a tracking algorithm. Futher-
more, it set emphasis on the inner layer (r"3.0 cm,
!4.0 cm4z47.6 cm, z"0 is beam collision
point) of the 3-layered SVD, because this layer
shows a higher occupancy for beam background
events in the order of &10%. The corresponding
polar angle region is 36.8°404158.5°.

Furthermore, a neural network based algorithm
was chosen (cf. Section 4), because the iteration
loops can be parallelized easily on hardware sys-
tems as transputers because of iterating loop struc-
ture, i.e. always identical commands are given.
A shower analysis based upon tracking would re-
quire an algorithm with many different instruc-
tions, thus not easy to parallelize.

2. Event types

2.1. Monte Carlo event simulation

As BELLE will start its operation at the end of
1998, Monte Carlo simulated data were used for

this study. Event generation for B°B°,qq hadron
production, 3 gluon events and q`q~ production by
annihilation were performed using the event gener-
ator QQ [5]. Two-photon events were generated
using the event generator TREPS [6]. A beam
background generator was especially developed for
KEK-B accelerator geometry by Sahu [7].
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Fig. 2. The proposed SVD DAQ system. Data are transferred from the frontend readout board to the Data Scanner (DS) and further to
the Slave Memory Board (SMM). The DMA Master Module (DMM) controls the readout. For details see Section 3.2. Modules
containing a T805 transputer chip are indicated with T . Totally 103 transputers are planned.

Fig. 1 (left) shows hit positions y
)*5

vs. x
)*5

for
simulated beam background events, as an example
for all types of simulated events. The 3-layered
SVD detector structure becomes visible in this view
(beam-eye view along z axis).

Although only charged hits are taken into ac-
count for the algorithm, neutral particles are in-
cluded in the simulation and can generate charged
particles by decay or radiation (e.g. cPe`e~). The
SVD detector geometry and response were
simulated using the GEANT 3.21 [8] based de-
tector simulation program GSIM, part of the
BELLE software library. Data production was per-
formed using the analysis framework BASF [9]
with its ability of parallel processing on up to 27
SUN SPARC processors. Beam background simu-
lation typically requires a CPU time of qK1min
per event, if simulated on one processor alone. The
SVD DAQ system is shown in Fig. 2. It is discussed
in detail in Section 3.2.

2.2. Physics events

Five multiparticle reaction types should be con-
sidered here to represent all possible e`e~ reaction
types. They will be referred to as physics events
hereafter. Generally, an asymmetric choice of beam
energies (¹(e~)"8GeV, ¹(e`)"3.5GeV) results

in a non-zero lab system velocity of the ¶(4S)
center-of-mass and slightly asymmetric event
shapes with respect to the collision point z"0 for
all physics event types.

Bhabha scattering e`e~Pe`e~ is not con-
sidered in this paper, in spite of the high cross
section p

B)!")!
"44 nb. The two high energetic

back-to-back single track signatures will be recog-
nized by the BELLE central driftchamber level
1 trigger with high efficiency.

2.2.1. B°B° events
The study of expected in B meson sys-

tems is the main physics task at BELLE. In an

e`e~ collision at Js"10.6GeV the ¶(4S) reson-
ance is produced with a cross section of

p
¶44

"2.4 nb. The ¶(4S) decays into B°B° and into
B`B~ with a branching fraction of 50% both. Only

B°B° events were used in this study, because of the
expected higher values1 of . Decay channels

1Due to interference of in decay (C(BPX)O

C(BPX) and in oscillation p(B°PB°)Op(B°PB°) pre-

dicted values of are larger in case of B°B° than in case
of B`B~ (with decay widths C, decay channels X and probabilit-
ies p).
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Fig. 3. zu topology for event ensembles of N"1000 events of e`e~ into different final states at Js"10.6GeV, z coordinates
corresponding to the BELLE SVD inner layer. From left to right, top to bottom: ¶(4S)PB°B°, hadron production from continuum qq,
two-photon reactions 2c, q`q~ production by annihilation, three-gluon events (ggg) and beam background.

as B°(B°)PJ/WK
s
will be among the first studies at

BELLE. B°B° events (and B`B~ events) show
a uniformely spread distribution of hits in the zu-
plane (cf. Fig. 3 top, Fig. 4 top). Due to the high
mass of the produced b quarks a jet structure is
generally not observed.

2.2.2. qq events

The pair production of a heavy b pair through
the ¶(4S) resonance is overlayed by pair produc-

tion of the light quarks uu, dd, ss and cc. The cross
section of this hadron production from continuum
p
22
"3.0 nb is higher than p

¶44
. However, the
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Fig. 4. zu topology for single events of e`e~ into different final states at Js"10.6GeV, z coordinates corresponding to the BELLE
SVD inner layer. From top to bottom: ¶(4S) PB°B°, hadron production from continuum qq, two-photon reactions 2c, q`q~
production by annihilation, three-gluon events (ggg) and beam background. qq events show a typical two-jet, ggg events a typical
three-jet structure (indicated by boxes). In the case of beam background the distribution for 1000 events is added as contour plot
(enhancement in the uK0 region).

qq events are expected to be separated efficiently
from B°B° events in offline analysis using thrust
and sphericity shower analysis [4]. qq events are of
theoretical interest as they provide a tool for testing
perturbative QCD predictions, even in the next-to-
leading order regime [10]. Due to the low mass
of the produced light quarks, all ejectiles have
relatively high kinetic energy (compared to bb

production). Thus, qq events generally show
a back-to-back two-jet signature, with a topology
*u [Jet(1), Jet(2) ]K180° (cf. Fig. 4).

2.2.3. ggg events
Gluon events generally show a typical three-jet

structure [11]. Three gluon production e`e~P

ggg should be considered here as typical three-jet
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example also for other gluon reactions, e.g. gluonic
bremsstrahlung e`e~Pqqg. Experimental data
are rare due to the small cross section at

Js"10.6GeV, i.e. three-jet events are only 2.9%

of all jet events at Js"14GeV [12]. However,
gluon events should be considered here, because
BELLE will also perform measurements below the

bb threshold for background studies, e.g. at the
¶(1S) resonance. Former analyses [13] revealed
that the ¶(1S) resonance has an hadronic width
nearly saturated by decay into three gluons. Gener-
ally, gluon jets show a slightly higher charged mul-
tiplicity than quark jets in the order of 429%
[14], depending on the gluon production process.

2.2.4. Two-photon events
The reaction e`e~Pe`e~cwcw is a higher-order

QED process which also generates multiparticle
final states. Two-photon reaction measurements,

especially for hadron production pp, KK, pp or

"", are of interest due to implications e.g. for SU(3)
flavour symmetry breaking effects [15]. The cc
collision axis is nearly coincident with the e~e`
beam collision axis, leading to a well balanced
event p

M
. Since e~ and e` scatter at small angles,

they generally leave the experimental area without
being detected. As an event generator for hadron
production was not available for this study, only
cwcw

Pl`l~, including radiation and decay, was
taken into account [6]. Multiparticle events with
charged multiplicity N52 (42% of the data set) in
the inner SVD layer were extracted.

2.2.5. q`q~ events
q particles can be created by the annihilation

process e`e~Pq`q~. The q particle decays with
a decay length of cq"91.4lm into three or more
charged prongs with a branching fraction of
'14%, thus generating charged multiparticle
states. Generally, the events are not balanced in p

M
,

because missing momentum is carried away by
neutrinos (from q decay). The q`q~ events are of
special interest due to possible examination of CPT
invariance [16] by employing triple-momentum
correlations of the momenta of the incident beam
e~ (or e`) with the momenta of the outgoing e and

l, (final state of qPe/lll ).

2.3. Beam background events

Accelerator beam pipes do not contain perfect
vaccum. Both beams e` or e~ can interact with
a residual gas molecule and deviate from the ideal
path. Electromagnetic interaction of first order by
Coulomb scattering or second order by Brem-
sstrahlung is dominant. Hadronic interaction
(photo—nuclear reactions) should not be considered
here, due to their smaller cross section, i.e. the
photo—nuclear interaction length is longer than the
radiation length typically by more than two orders
of magnitude [17].

The topology can be described by some general
properties: (a) high charge hit multiplicity (up to
three times higher than physics events’ multiplicity,
cf. Fig. 6, top left), (b) enhancement in uK0 region
(cf. Fig. 1, right) and (c) wide z coordinate spread
(cf. Fig. 6, top right). Furthermore, ADC spectra of
beam background events differ significantly from
physics events due to signal/trigger mismatch,
i.e. they are originating from different beam
bunches.2

The ADC value corresponds to the amplitude of
an SVD channel preamplifier output at a given
time t

ADC
. The timing will be adjusted in such a way

that in case of a physics event the time t
ADC

exactly
corresponds to (a) the BELLE global trigger time
trigger generated by the BELLE central drift cham-
ber or the BELLE time-of-flight system and, at the
same time, (b) the maximum of the preamplifier
output signal. If t"0 marks signal start of the
preamplifier output, this adjusted time is given by
t
ADC

"2ls. In case of a beam beackground event,
the trigger occurs at some other time in the time
window 04t

ADC
420ls, thus a randomly chosen

amplitude of the rising or declining signal is taken
as ADC value. Therefore beam background events
show an ADC distribution with nearly exponential
shape (cf. Fig. 5A, gray histogram), physics events
show a peak corresponding to a charge equivalence
of &15.000 e~ (ADC value &250 in Fig. 5A,
white histogram). Table 1 shows cross-section

2 In the KEK-B accelerator beam bunches of l"0.4 cm are
spaced by *l"59 cm [2], thus the average time between two
bunches is q"2 ns.
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Fig. 5. ADC signatures. (A) Simulated ADC spectra for beam background (gray) and B°B° (white). Beam background peaks at channel
zero due to signal/trigger mismatch (originating from different beam bunches). (B) Simulated ADC spectrum for B°B° including
electronic noise (signal threshold at 3]RMS). (C) Simulated ADC value vs. hit position z

)*5
for B°B° events as an example for physics

events generally. Charged particles originating from the beam collision point vicinity pass higher z coordinates with higher polar angle,
resulting in a higher material path length with higher energy deposition. (D) Simulated ADC value vs. hit position z

)*5
for beam

background events show a random pattern (for details see Section 2.3).

p and expected trigger rates R for different types of
R.

Due to geometrical and electronical reasons,
SVD hits usually show a cluster structure, i.e.
for one charged particle a number 24n46
neighboured strips show significant charge accu-
mulation. The corresponding ADC signals were
summed before usage as input for the classification
algorithm.

Fig. 5C and D also show the necessity of an
analysis in a higher dimensional input space (in this

case n"2) rather than analysing the 1-dim ADC
histogram alone. In case of physics events, charged
particles originating from the vicinity of beam colli-
sion point, pass higher z coordinates with higher
polar angle 0, resulting in a higher material path
length *l with higher energy deposition *E. In
a 2-dim histogram ADC vs. z (cf. Fig. 5C) this
correlation (ADC value &*E&*l&cos(0)) is
visible as a distribution with curved shape. Beam
background events show a different distribution (cf.
Fig. 5D), i.e. no dependance ADC"f (z) is visible.
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Table 1
Cross sections p and expected trigger rates R for different

event types at BELLE (Js"10.6GeV, luminosity L"

1034 cm~2 s~1, [1]). The trigger rate value for two-photon
events (2c) assumes a transverse momentum cut p

t
50.3 GeV.

Values for q`q~ include also l`l~

Abbreviation Reaction p(nb) R(Hz)

B°B° ¶(4S)PB°B° 1.2 12

qq e`e~Pqq 2.8 28
ggg e`e~Pggg (1 (1
q`q~ e`e~Pq`q~ 1.6 16
2c e`e~Pe`e~cwcw

&15 &35

Beam background EM interaction — 5100Hz
with residual gas

3. Hardware

3.1. The T805 transputer

SGS THOMSONtm inmostm transputer systems
are successfully used for several years due to their
ability of parallel data processing. Applications in
pattern recognition cover e.g. face recognition [18].
Furthermore, particle physics experiments make
use of transputer networks for online purposes such
as data acquisition (DAQ) [19] and triggering [20].
In this paper, we present an application of a T805
[21] transputer system for a particle physics pat-
tern recognition task by employing a self-organiz-
ing map (SOM) (cf. Section 4.2, [22]). It was shown
recently that SOMs can be parallelized successfully
on other hardware platforms (e.g. IBM workstation
cluster [23]). The basic T805 parameters are listed
in Table 2.

The maximum BELLE (all subdetectors) and
BELLE SVD DAQ readout frequency is designed
to be R"500Hz [3], being the highest rate used
for a particle physics transputer DAQ system so
far. Former systems as the DAQ system of the
VENUS experiment [24] handled lower trigger
rates (R415 Hz). For rates R'500Hz the trans-
puter should be replaced by more powerful systems
as digital signal processors.

In this paper, we study the possible implementa-
tion of a beam background rejection algorithm
onto the SVD DAQ system. Due to the value of

Table 2
Transputer T805 parameters

Clockrate 25MHz
Integer peak performance 30MIPS
Floating point peak performance 4.3MFlops
On chip static RAM 4kB
Interrupt response time 630ns

R"500Hz in this case, the maximum transputer
processing time (maximum time for yes/no deci-
sion) per event is limited to q42 ms, corresponding
to a typical level 3 trigger time.

However, the proposed implementation is flex-
ible and can also be applied for offline analysis
purposes, i.e. filtering of data events from storage
tapes after the experiment. The event I/O in that
case could be performed via the transputer host
interface to a workstation (in our case a SUN
SPARC-5V running SunOS 4.1.1). This I/O facility
was also used for processing the Monte Carlo gen-
erated data for this study.

3.2. DAQ system

The proposed DAQ system [19] consists of
a T805 network, connected by serial transputer
links (bandwidth 41.8MB/s). The system serves
to read out 81.900 silicon strips.

The DAQ readout sequence is shown in Fig. 2.
One data path consists of the four subsequent mod-
ules: (a) frontend board for data read, (b) data
scanner (DS) for analog-to-digital conversion, (c)
slave memory module (SMM) for temporary stor-
age of a partial event and (d) DMA master module
(DMM) for local event building. The system con-
sists of 64 modules of (a), 48 modules (b) and (c)
each, as well as four DMM modules. Modules
(b)—(d) each contain one T805 transputer chip, re-
sulting in a total amount of 103 transputers.

For performing a physics/background separ-
ation task, principally one has to examine the
topology of the whole event. Therefore the algo-
rithm should be implemented on a DMM or, with
modifications of the algorithm, on the SMM net-
work, i.e. using transputer links to examine event
parts of a neighboured SMM.
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3.3. occam-2 programming

Transputer programming was performed using
the programming language occam-2[25]. occam-
2 provides standard sequential functionality as well
as specific programming abilities for parallel loop
execution, e.g. SEQ i"0 FOR 100 for a sequen-
tial loop, PAR i"0 FOR 100 for a parallel loop.
Using such abilities, independent loop iterations in
the SOM algorithm can be executed at the same
time step.

However, using as much as possible PAR state-
ments does not necessarily increase processing
speed. For each loop index i one process is started,
containing process operating overhead. Number of
processes per transputer CPU is limited, thus trans-
puter program optimization means finding the op-
timum number of SEQ and PAR statements rather
than using PAR in each loop alone.

Timing measurements were performed using the
data type TIMER. The TIMER default digitization
of *t"64ls can be changed by using the PRI
PAR command to *t"1ls according to the
scheme

TIMER clock :
PRI PAR

SEQ
clock ? t1
... — event processing
clock ? t2

SEQ
SKIP — necessary dummy

In case of a possible offline application (to be
discussed in detail in Section 6.6) the event I/O can
be performed by usage of the transputer host inter-
face to a workstation with the occam-2 libraries
hostio.lib and streamio.lib, e.g. the command
ss.gets() for reading an event from standard
input.

3.4. Connection to frontend system

The implementation of a possible level 3 trigger
into the BELLE trigger system is not studied in
detail yet, although the framework has already
been prepared. However, the yes/no decision could
be transmitted as a logical signal to the LeCroy
1810 module [26] which is part of the BELLE

FASTBUS data acquisition. This module can, ac-
cording to FASTBUS specifications, distribute
a fast clear signal, which stops the started analog-
to-digital data conversion and resets all modules
within q4500 ns. Typical cable delays are in the
order of q4100ns for cable lengths ¸420m.
Thus, further signal processing for usage in the
BELLE trigger scheme would not be time critical.

4. Algorithm

4.1. Input

A schematic overview of the algorithm is shown
in Fig. 8. The basic principle of the algorithm is
a topology classifier in the unfolded ru-plane of the
inner SVD layer, followed by a mathematical tool
for an analysis in a 5-dim input space, namely
a Self-Organizing Map (SOM) (cf. Section 4.2).

Each of the physics event types (cf. Section 2.2)
as well as the beam background events (cf. Sec-
tion 2.3) show more or less characteristic topo-
logies in the ru-plane. Topologies for event
ensembles are shown in Fig. 3, topologies for single
events in Fig. 4. The characteristics of the topolo-
gies are used for preparation of five variables which
are fed into an SOM. The five input parameters
x
i
, i"1,2,5 are listed in Table 3, displayed in

Fig. 6 and will be discussed in detail here.
Input parameter 1: Physics events usually gener-

ate signals on 60—80 strips in the first SVD layer,

Table 3
Input and output parameters for the self-organizing map. For
details see Section 4.1

Parameter Definition Transformation

Input
N

)*5
Number of charged hits 1/N

)*5
*z z spread z

.!9
!z

.*/
1!*z

u
.%!/

u mean value (+N)*5
i/1

u
i
)/n —

ADC
.*/

Minimum ADC value ADC
.*/

]2(streched)
A

2
Two-point correlation
value

1/A
2

Output
d
.*/

Minimum 5-dim Eucli-
dean distance
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Fig. 6. SOM input parameters (normalized) vs. event number. From top to bottom, from left to right: Number of charged hits N
)*5

,
z spread *z"z

.!9
!z

.*/
, u

.%!/
, ADC

.*/
, two-point correlation value A

2
. For details see Section 4.1.

beam background events up to a maximum of
K300 strips. Thus, a high value N

)*5
is a good

indicator for the presence of a beam background
event (cf. Fig. 6, top left).

Input parameter 2: Among all charged hits the
minimum and maximum z coordiates z

.*/
and

z
.!9

are searched. Beam background events gener-
ally show a larger *z"z

.!9
!z

.*/
value than

physics events, because the particle tracks are not
originating from the beam collision point (cf. Fig. 6,
top right).

Input parameter 3: Beam background events
show a strong enhancement in the uK0 region
(cf. Fig. 1, right). Thus, the azimutal angle
average value *u"+N

i/1
hitu

i
K0 provides

a good classification tool (cf. Fig. 6, middle
left).3

Input parameter 4: The minimum ADC value
ADC

.*/
(cf. Fig. 6, middle right) is a good indicator

for a beam background event due to signal/
trigger mismatching (particles originating from
different beam bunches). Details are described in
Section 2.3.

Input parameter 5: Two-point correlation func-
tions are widely used in astronomy [27] to describe

3The exact calculation is *u"+N
i/1

hit u@
i
K0 with the two

cases (a) u@"u for u(180° and (b) u@"(360°!u) for
u'180° (symmetrization on a cylindrical surface).
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Fig. 7. Mathematically transformed SOM input parameters (normalized) vs. event number. Transformations are described in Table 3.
For sequence see Fig. 6. Beam background events should cluster at the bottom (x

i
K0), physics events at the top (x

i
K1). For details see

Section 4.1.

galaxy clustering. Recently, it was shown that they
are also applicable to cluster analysis in particle
physics data analysis [28]. All distances between
data points (in our case distances between charged
hit coordinates in the zu-plane) are calculated pair-
wise and filled into a histogram. If points are clus-
tered in certain regions, the distances and the mean
value of the histogram, defined as A

2
, are small. If

points are not clustered, A
2

is large. In our case
beam background events often do not show any
small scale clustering as it is given in cases of jet
production e.g. for qq or ggg, resulting in large
A

2
values (cf. Fig. 6, bottom). However, as already

mentioned, they show a clustering in the uK0

region. Thus, the combined information of the in-
put parameters x

3
"u

.%!/
and x

5
"A

2
is impor-

tant for classification.
All input parameters are normalized to a range

[0,1] in order not to allow decision priority to
a single parameter (by dominating the 5-dim Eu-
clidean distance with the value of the single para-
meter’s 1-dim distance). Moreover, all parameters
x
i
were transformed by simple mathematical trans-

formations (cf. Table 3, Fig. 7) in order to guaran-
tee maximum classification efficiency. The aim of
the transformations was to cluster beam back-
ground events around the x

i
K0 region, physics

events around the x
i
K1 region.
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Fig. 8. Algorithm scheme. All charged hits in the zu-plane are used for the calculation of the two-point correlation value A
2
. The SOM

analysis is performed in a 5-dim input space (cf. Section 4.1). The SOM output is a minimum Euclidean distance d
.*/

, serving for an
yes/no decision according to a cut value *d#65

.*/
.

4.2. Training

Generally, neural networks must be trained to
perform a certain classification task, a recall
phase for data classification follows after train-
ing. Algorithms must be distinguished into two
related groups: (a) supervized models to be trained
with Monte Carlo simulated data holding a com-
plete input—output information and (b) unsuper-
vized models using only input information. In
the latter case the network is trained directly
with unbiased experimental data and performs
a search for clusters in a given n-dimensional input
space.

The SOM [22] is the most popular unsupervized
neural network algorithm, used in many applica-
tions as a mathematical tool for an analysis in an
n-dim input parameter space. A SOM is based on
units called nodes which can be defined as points in
the n-dim input space representing a complete cell,
also called Voronoj cell, around it. An n-dim cluster
in the input data is filled with cells and thus quan-
tized. The cells can be compared to bins in a 1-dim
histogram. The number of nodes N

/0$%
thus deter-

mines the accuracy of binning. In the recall phase
for an n-dim event vector the Euclidean distances
to all nodes are calculated. The minimum Euclid-
ean distance d

.*/
provides a proper tool for classi-

fication.

Mathematically, the SOM can be regarded as
a nonlinear function f (x)"O, where x is an n-dim
vector, O is a scalar output variable. It was proven
that f is topology preserving, i.e. even complex clus-
ter structures (e.g. an n-dim torus) can be mapped
[22].

If a SOM is trained on several clusters, the
clusters must be identified in the first step. In the
second step, d

.*/
determines the corresponding

cluster and hence the classification. In this paper,
we train the SOM only on one cluster, i.e. the
cluster given by 5-dim beam background data.
A beam background event should have a small d

.*/
,

whereas a physics event a large d
.*/

in the recall
phase. As we used Monte Carlo data for this study,
the identification of beam background data is fixed.
In the experiment, pure beam background data
could be recorded by running the accelerator in
non-collision mode, e.g. either with e` or e~ beam
only.

However, our SOM algorithm (Fig. 8) differs
from the most simplest approach by employing two
features which were introduced into self-organizing
neural networks rather recently: growing and gravi-
tation.

4.2.1. Growing
The original Kohonen algorithm is based on

a fixed number of nodes N
/0$%

, not changed during
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Fig. 9. Classification principle. Top: SOM classification. In the
5-dim input space the beam background events form a cluster
near the origin x"0 (cf. Fig. 7), the physics events far from the
origin. For an event e the Euclidean distance d(e,n) to all nodes
n is calculated and the minimum distance d

.*/
is chosen. The

distance d
.*/

is small for beam background events (zoomed
cluster) and large for physics events. Bottom: Linear classifier.
The sum of the input variables S also provides a classification
tool (cf. Section 6.1). In this case, S"S

1
#S

2
for a beam back-

ground event is smaller than S@"S
3
#S

4
for a physics event.

the training phase. The number of nodes is a
free parameter, to be adjusted by the user. Re-
cently, SOM algorithms, extensions with variable

N
/0$%

were published (Growing Cell Structures
(GCS) [29], Growing Neural Gas (GNG) [30]).
Creation and destruction of nodes, according to the
actual SOM status, is a part of the algorithm. In
our application, we use a simplified GCS ansatz. In
the training phase, with the first processed event
vector x (e"1) a node vector x(n) is created, with
exactly the same 5-dim coordinates (Fig. 9).

For each event e"1,2,N
%7%/5

with the event
vector x(e) the Euclidean distances to all formerly
created nodes n"1,2,N

/0$%
are calculated:

d(e,n)"x(e)!x(n)S
N$*.

+
i

(x
i
(e)!x

i
(n))2. (1)

All distances d(e,n) are compared to a predefined
cut value4 d

#65
, corresponding to the radius of the

Voronoj cell. In case of d(e,n)'d
#65

, a new node
with the event vector coordinates is created. If
d(e,n)(d

#65
is valid for all nodes n, then the node

with the smallest Euclidean distance d
.*/

"

min[d(e,n)] is searched among all nodes. In SOM
algorithms this node usually is called winner node.
As will be described in Section 4.2.2, each node has
a mass by definition, due to the gravitational part of
the algorithm. The mass of the winner node is
increased at this step. Thus, the mass of the node is
correlated to the number of events in the Voronoj
cell, and keeps the information, the node is very
important for the classification process.

4.2.2. Gravitation
To achieve a proper mapping of the n-dim cluster

structure, a mechanism must be provided to move
the nodes in the input space. In the original
Kohonen SOM [22] all node vectors x(n) are
moved into the direction of the actually processed
event vector x(e) (with free parameters e and d):

x(n)"x(n)#e(t) ) f(d,t) ) (x(e)!x(n)). (2)

However, in a former study [31] it turned out that
gravitational interaction between the nodes also
provides a feasible mechanism for movement. In
the gravitational SOM, each node is assigned with

4Typical cut values are 0.014d
#65

40.15. The setting of this
value automatically determines the final number of nodes.
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a mass value m, simply defined as an integer num-
ber and initialized for each node to m"1. As
described in Section 4.2.1, the mass is increased
m"m#1 for winner nodes during the training.
Thus, the mass of a node contains information
about the event density in the Voronoj cell of
a node and hence, the node is vert important for the
classification process.

Concerning the algorithm itself, there are two
main motivations for its usage instead of the orig-
inal Kohonen algorithm:
1. In case of the original Kohonen algorithm, the

optimization of the parameters e and d as well as
the time dependance e"f

1
(t) and d"f

2
(t) are

very time consuming; general rules do not exist.
The gravitational algorithm employs only one
parameter a, corresponding to a gravitational
force strength, which is not time dependent.
Moreover, the parameter a is correlated to the
typical n-dim cluster size [31] and can therefore
be easily estimated.

2. The gravitational algorithm is less CPU time
consuming than the original Kohonen algo-
rithm. During the training phase the original
SOM updates the node vectors with each iter-
ation, i.e. with the processing of each single input
event. The training phase of the gravitational
SOM is divided into two parts. In the first step
all events are processed once, the nodes are
created and the node masses are updated. In the
second step, after event processing, the gravi-
tational contraction of the nodes is performed.
The number of iterations corresponds to
O(N

%7%/54
]N

/0$%
) for the original SOM and to

O(N2
/0$%

) for the gravitational SOM. It should be
emphasized that gravitation is only part of the
training, not part of the analysis process.

In the gravitational SOM, for each node
n"1,2,N

/0$%
the resulting gravity vector u(n) is

calculated and the corresponding node vector x(n)
updated according:

d(n@,n)"x(n@)!x(n), (3)

u(n)"S ) d(n@,n), (4)

x@(n)"x(n)#u(n). (5)

The ansatz for the gravitational strength S, as ori-
ginally proposed in [32], is given by

S"
a

a#d
)m(n), (6)

where the gravitational force strength a is given by
the average cluster size (in our case aK0.1). How-
ever, for purposes of faster transputer processing
this function was replaced by S@"(1!d)c1 with
a similar shape and comparable classification
results (typical values 84c

1
432).

The effect of the gravitational algorithm is
shown in Fig. 10 for a 2-dim projection of the 5-
dim input space. Fig. 10C shows the node distribu-
tion before, Fig. 10D shows the much better node
mapping after the gravitational contraction. Train-
ing is performed with beam background data only.
The corresponding beam background data distri-
bution that should be mapped is shown in
Fig. 10A.

4.3. Output

In the SOM analysis phase, for each event e to be
classified after training, again the Euclidean dis-
tance d(e,n) to all nodes n is calculated according to
Eq. (1). As described in Section 4.2, the minimum
Euclidean distance d

.*/
"min[d(e,n)] is a proper

tool for classification, i.e. d
.*/

should be small for
beam background events and large for physics
events. The classification principle is graphically
shown in Fig. 9 (top).

Fig. 11A shows the value of d
.*/

as a function of
the event number, 1000 events representing the
data set for one reaction type. Fig. 11B shows 1-
dim histograms for d

.*/
for the cases of beam back-

ground and physics events. Final classification is
done by defining a cut value d#65

.*/
which is given by

the position of the minimum in an histogram con-
taining the d

.*/
values for all beam background and

physics events (corresponding to the (SOM histo-
gram) grey and white histograms, respectively, in
Fig. 11B). In the analysis, a value d

.*/
4d#65

.*/
leads

to classification as beam background and hence
event rejection, d

.*/
'd#65

.*/
to classification as phys-

ics event which must be kept.
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Fig. 10. Gravitational algorithm. 2-dim projection (N
)*5

vs. *z) of the 5-dim input space for (A) beam background data, (B) physics data,
(C) node positions before and (D) node positions after gravitational phase. After the gravitational contraction the nodes map the beam
background event distribution shown in (A) properly.

5. Results

5.1. Classification efficiency

The classification performance can be evaluated
with two parameters: (a) background rejection frac-
tion F

BG
and (b) physics pass fraction F

PHYS
. Both

F
BG

and F
PHYS

should be as high as possible.
Fig. 12 shows the final results as a function of the
necessary CPU event processing time on the trans-
puter. Within a decision time of q"2 ms values of
F
BG

"75.0% and F
PHYS

"96.9% were achieved.
Detailed values of F

PHYS
for the five different event

types are listed in Table 4.

As the fluctuation for F
BG

in Fig. 12 is smaller
than the estimated error (cf. Section 5.3), it can be
concluded that SOM convergence is achieved. The
high F

BG
data point at q"0.6ms CPU time is

assumed to be a local classification minimum, not
suitable for the final trigger application, because at
the same time less physics events pass the trigger (cf.
Fig. 12, bottom).

5.2. Timing measurements

Realtime timing measurements were performed
using the occam-2 data type TIMER (cf. Sec-
tion 3.3). In the training phase, due to pairwise
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Fig. 11. SOM output. (A) SOM output vs. event number e. The event number serves as an indicator for the reaction type. Events with
e41000 are training events (beam background only, grey). (B) Histogram of SOM output d

.*/
for beam background events (grey) and

physics events (white) for full output value range (small histogram) and zoomed cut region (large histogram). The cut position d#65
.*/

is
displayed. Events with d

.*/
4d#65

.*/
are classified as beam background, events with d

.*/
'd#65

.*/
as physics events. (C) Linear classifier as an

alternative method. The input sum S"x
1
#x

2
#x

3
#x

4
#x

5
is histogrammed. Beam background rejection fraction (68.3% for a cut

position S
#65

"1.55) is smaller than in the case of SOM classification (75.0%, cf. Section 6.1). (D) SOM output in case of electronic noise
(signal threshold set to 3RMS). For details see Section 6.5.

node—node gravity calculations the CPU time t is
a quadratic function of the number of nodes
N

/0$%
(cf. Section 4.2). All measurements could be

fitted (s2(18]10~5) to

t[ms]"0.07N2
/0$%

!0.08 n!0.15. (7)

Thus, the algorithm needs t"6 ms per event
in case of 10 nodes, t"680ms for 100 nodes.
This total event processing time includes both the
mass update phase (event iteration) and gravi-

tational contraction phase (node iteration) (cf. Sec-
tion 4.2.2).

In the analysis phase gravitation is not needed.
Therefore t"f (N

/0$%
) is a linear function which

could be fitted (s2(2]10~5) to

t[ms]"0.022N
/0$%

!0.024. (8)

10 nodes need t"0.18ms per event, 100 nodes
need t"1.95ms. Therefore, a binning in the 5-dim
input space using 100 nodes is the accuracy limit to
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Fig. 12. Results. Top: Beam background rejection fraction F
BG

vs. CPU decision time. Bottom: Physics trigger passing fraction
F
PHYS

vs. CPU decision time. For details see Section 5. The result for the alternative linear classifier (cf. Section 6.1) is given by a solid
line in both figures.

keep the decision time restriction of q42ms
(R"500Hz readout rate).

5.3. Error estimation

The classification error is given by the error in
the determination of the cut position d#65

.*/
as dis-

played in Fig. 11B. As described in Section 4.3 the
value of d#65

.*/
is determined by the position of the

minimum in a histogram, filled with the d
.*/

values

for all beam background and physics events. This
histogram has a certain binsize, thus the classifica-
tion error can be estimated by counting the differ-
ent classification fractions by moving d#65

.*/
by

*d"$1 bin width. Typically, error for beam
background is given by &2% (due to the steep rise
of the distribution against d

.*/
"0) and by

&0.25% for physics events (flat distribution in the
cut region). Errors have been included as error bars
in Fig. 12.
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Table 4
Physics pass fractions F

PHYS
for the five different physics event

types (cf. Section 2.2)

Event type F
PHYS

B°B° 97.1%

qq 97.4%

ggg 97.3%
2c '99.5%
q`q~ 93.0%

Total 96.9%

6. Discussion

6.1. Alternative linear classifier

Fig. 7 shows that all transformed input para-
meters x

i
have small values x

i
K0 for beam back-

ground and large values x
i
K1 for physics events.

A simple alternative method to an SOM could be
classification by a sum S"x

1
#x

2
#x

3
#x

4
#

x
5
. The classification principle is graphically shown

in Fig. 9, bottom. The classifier S is histogrammed
in Fig. 11C. As in case of the SOM output (cf.
Section 4.3), a cut value S

#65
is defined by the min-

imum position of the sum of the outputs of beam
background and physics events (e.g. S

#65
"1.55 in

Fig. 11C). Each event can be classified as beam
background for S4S

#65
, as physics event for

S'S
#65

. The results are worse than in case of SOM
classification: 68.3% beam background rejection
(75.0% for SOM) and 95.9% physics pass fraction
(96.9% for SOM). The reason is given by a worse
yes/no signal fraction of the typical beam back-
ground output O

1
to the typical physics event

output O
2

(cf. Table 5): O
1
/O

2
K0.01/0.2"20

(cf. Fig. 11B) in case of SOM classification,
O

1
/O

2
K"1.0/3.0"3 (cf. Fig. 11C) in case of lin-

ear classification.

6.2. Comparison to other trigger systems

The B meson experiment BABAR at SLAC [33]
also plans to use a beam background rejection imple-
mentation on a level 3 trigger, using information

Table 5
Comparison of SOM and linear classifier S"x

1
#x

2
#x

3
#

x
4
#x

5
. For mentioned values of O

1
, O

2
(cf. Fig. 11B and C).

For details see Section 6.1

Beam BG Physics Beam BG Physics
rejection pass output O

1
output O

2

SOM 75.0% 96.9% &0.01 &0.2
S 68.3% 95.9% &1.0 &3.0

of the BABAR silicon vertex tracker detector SVT.
The input trigger rate is R"2000Hz (decision time
q"0.5ms). The algorithm is based on vertexing,
i.e. charged particle track extrapolation onto the
z axis, followed by a multiplicity counting in the
beam collision point vicinity. The design beam
background rejection fraction is '95%. As in our
case within a decision time of q"0.5ms an efficien-
cy of 73.5% was achieved (see data point at
q"0.5ms in Fig. 12, top), the BABAR algorithm
seems to be a more effective approach. A physics
event rejection fraction is not published until now.

The experiment H1 at DESY uses a level 2 trig-
ger [34] for tagging of semileptonic B decays, based
upon a feed-forward neural network (FFNN,
cf. Section 6.3) algorithm. The decision time is
t"18ls, using the neurocomputer Adaptive Solu-
tions CNAPS. This algorithm was not considered
in our case due to the necessity of supervized train-
ing by Monte Carlo data with a given input—output
information (cf. Section 6.3). Another FFNN trig-
ger system for rejection of background events is
proposed for H1, using a fast analog chip [35]. Due
to a very short decision time of q"96 ns the system
could be used for a level 1 trigger decision.

6.3. Comparison to feed-forward neural networks

The popular feed-forward backpropagation neu-
ral network (FFNN) algorithm has been used for
several applications in particle physics [36]. In a re-
cent comparison [37] an FFNN and a growing
SOM performed equally well in case of a particle
physics classification task (supervized training
mode).

However, an FFNN can only be trained in super-
vized mode, using a Monte Carlo simulated data
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with given input—output correlations. The Monte
Carlo model must describe the experimental reality
almost perfectly. In our case, the beam background
simulation program applies kinematical cuts for
the particle event generation, such as a photon
energy cut for Bremsstrahlung and a scattering
angle cut for Coulomb scattering [7]. Hence, some
real event types with certain topologies are not part
of the simulated data set. For this reason the choice
of an unsupervized neural network algorithm as the
SOM was essential to avoid any biased classifica-
tion.

Moreover, understanding the decision process of
an FFNN is a difficult task, pointed out in a recent
review [38]. Usually an FFNN has a multilayered
structure of a input layer, one or two “hidden”
layers and an output layer of nodes. For an under-
standing of the decision process (i.e. why is this
event classified as beam background?) an analysis
of the hidden layer node values must be performed,
using time consuming statistical techniques as e.g.
a Principal Components Analysis (PCA). In case of
an SOM, the decision process can easily be under-
stood, because it is given by the minimum Euclid-
ean distance only.

It should be mentioned that in case of an applica-
tion of the presented SOM algorithm in an en-
visaged BELLE experiment, the training should be
redone using the experimental data instead of the
simulated data used for this study. In case of an
FFNN application this re-training is usually omit-
ted, because a perfect Monte Carlo data set is
assumed. However, as the SOM training on the
T805 (N"1000 beam background events) takes
only about qK11min (cf. Section 5.2), any prob-
lematic CPU time consumption by re-training is
not expected.

6.4. Comparison to jet algorithms

Any online implementation of an offline jet algo-
rithm [39], replacing the two-point correlation A

2
,

was not considered to be appropriate due to two
reasons.
1. Variables as thrust, sphericity or planarity

are based on momentum information (p
M

or
p
,
) which is not available in the SVD data

stream.

2. Standard analysis is performed in cone regions
around a somehow defined jet axis (e.g. thrust
axis). In comparison, the two-point correlation
A

2
does not need an axis nor cone definition and

is therefore a simpler and faster approach.

6.5. Electronic noise

SVD hits which are generated by electronic noise
effects rather than by charged particles can be
simulated by a GEANT based program, prepared
by Ozaki [40]. However, for reasons of easier data
handling on the transputer we generated electronic
noise hits by parametrization of results of the
GEANT simulation.

For an event with N
)*5

hits (data set described in
Section 2.2) further N/0*4%

)*5
electronic noise hits were

added. The number N/0*4%
)*5

depends on a signal
threshold setting S

5)3
, the threshold being measured

in terms of the R.M.S. of the simulated electronic
noise [40] (a typical experimental value will be
S
5)3
"3]R.M.S.).

Total SVD hit rates N
)*5
#N/0*4%

)*5
were deter-

mined using the GEANT program and are listed in
Table 6 (averaged for N"10.000 events).

Each electronic noise hit was assigned with
a randomly generated z coordinate and / coordi-
nate (uniform probability distribution).

According to [40] the ADC value distribu-
tion was parametrized with a gaussian probability

Table 6
Effect of electronic noise. Total number of SVD hits
N

)*5
#N/0*4%

)*5
, averaged for N"10.000 events, for different thre-

shold settings S
5)3

(threshold measured in terms of the electronic
noise RMS)

S
5)3

N
)*5
#N/0*4%

)*5

With electronic noise
1RMS 29192
2RMS 5016
3RMS 574
4RMS 283
5RMS 262
6RMS 246

Without electronic noise
3RMS 289
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distribution

p"expA!
1

2
)A

ADC!c
2

c
3

B
2

B. (9)

The parameters c
2

and c
3

are based on fits to the
simulation results. The ADC spectrum is shown in
Fig. 5B. During summation of the ADC values of
neighboured stripes, in case of electronic noise, one
must take into account that the values can princi-
pally be negative [40].

The electronic noise has several consequences for
the SOM input parameters (cf. Section 4.1):
1. Due to the random distribution of the electronic

noise hit location the topology input parameters
*z, u

.%!/
and A

2
are affected in a negative way,

i.e. the ru topology signature of the event is
“washed out”.

2. The number of charged hits, now given by
N

)*5
#N/0*4%

)*5
, is still an important parameter for

classification, because N/0*4%
)*5

has the same value
for both beam background and physics event
types. Thus, any difference in N

)*5
can still be

used for classification.
3. The ADC values for beam background events

(cf. Fig. 5A) and for electronic noise hits (cf.
Fig. 5B) are very similar, i.e. in both cases low
ADC values near zero value are dominating.
Therefore the presence of hits with low ADC
values is not a good indicator for a beam back-
ground event anymore. The only difference is
given by the different probability distributions,
i.e. nearly exponential shape in case of beam
background, gaussian shape in case of electronic
noise. However, the identification is a difficult
task for an SOM as well as for each alternative
classifier. For a better classification the input
parameters can be filtered during the training
phase by applying an ADC value cut, i.e. only
hits with an ADC'ADC

CUT
are used.

The SOM output in case of electronic noise is
shown in Fig. 11D. If the same output cut position
is applied as in Fig. 11B (case without electronic
noise), a fraction of F

PHYS
"14% would be rejec-

ted. If one wants to keep the maximum rejection
value of F

PHYS
"5%, the cut position must be

moved to lower SOM output values. In the latter
case, using an ADC cut position during training of

ADC
CUT

"80, the final results were achieved (S
5)3

denoting the signal threshold):

F
BG

"40.3% for S
5)3
"3] RMS,

F
BG

"30.2% for S
5)3
"2.5]RMS.

Thus, a beam background rate R can be reduced by
a factor of 2.5 and 3.3, respectively, in the presence
of electronic noise.

6.6. Offline usage

If the KEK-B design values [2] for beampipe
pressure were achieved from the beginning of accel-
erator commissioning, there would not be any need
for any online beam background rejection system.
Although the classification system was designed for
online application in the SVD DAQ system, offline
usage for data filtering purposes is also possible by
employing the transputer host interface to a SUN
workstation (cf. Section 3.1).

In offline usage, there is no time limit for classi-
fication, as it is given in the online case by the
maximum DAQ readout rate (q"2ms,
R"500Hz, cf. Section 1). However, Fig. 12 shows
that any improvement of classification would not
be achieved by extension of the decision time
to values q52ms, i.e. both F

BG
and F

PHYS
are

converging.
It should also be stressed that, due to its simple

structure, the algorithm could easily be imple-
mented onto other fast hardware platforms as
Motorola 88100 chips (part of the BELLE event
building scheme). However, studies revealed that
any implementation to standard UNIX worksta-
tion systems as SUN SPARC-10 would increase the
event processing time to values q'40ms due to
lack of parallelization features.

7. Possible future improvements

It should be discussed if any extension of the
presented algorithm can lead to higher values of
both F

BG
and F

PHYS
. Two possible extensions

should be mentioned:
1. The SOM algorithm is based on 2-dim topologi-

cal zu-information. Thus, an improvement can
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be expected from employing 3-dim information,
extracted from a tracking analysis. This ap-
proach is used by the BABAR level 3 trigger
system (cf. Section 6.2). However, as tracking is
a CPU time consuming task, probably another
fast hardware platform (e.g. SHARC ADSP
21062 digital signal processors as part of the
extension of the SVD DAQ system) must replace
the transputer in this case.

2. As can be seen from the contour plot in Fig. 4
(bottom), beam background events do not show
a uniform multiplicity distribution M"f (z) as
a function of the z-ccordinate, i.e. M has a min-
imum around z"0. This behaviour is due to the
beam pipe geometry and can also be observed in
the distribution of track vertices of spent elec-
trons in the BELLE central drift chamber [17].
For this study, only the z-coordinate spread *z
was used as input for the SOM.
Deviations from a uniform M"f (z) distribution

are also proposed for a possible FFNN level 1 trig-
ger at the H1 experiment (cf. Section 6.2, [35])
without any further topological information. High
background rejection efficiencies F580% for
simulated H1 data also imply, to some extent,
a possible successful application for beam beack-
ground rejection at BELLE.

8. Summary

We studied a possible transputer implementation
of a beam background rejection algorithm for the
BELLE SVD with GEANT simulated data. The
successful algorithm was based upon a growing,
gravitational self-organizing map algorithm (SOM,
N

/0$%
"100, 5 topological input parameters).

A high fraction of 75.0% of beam background
events can be rejected, 96.9% of physics events

(B°B°, qq, ggg,2c, q`q~) pass the classification.
The method was compared to linear classification
ansatz, rejecting 6.7% less beam background events
than the SOM. Due to a decision time of only
q42 ms, the system could be implemented for on-
line use as level 3 trigger. Offline usage for data
filtering purposes after the experiment is possible
by usage of the transputer host interface to a SUN

workstation. The effect of electronic noise was
studied. In case of a signal threshold of 3 times the
R.M.S. value of the electronic noise, a fraction
of 40.3% of beam background events can be re-
jected while 95.0% of physics events pass the
classification.
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